Wednesday, 6 February 2013

Statistical Contingency Cost Estimation


Brent Flyvberg , who wrote Megaprojects and Risk: An Anatomy of Ambition, describes a technique for conducting statistical contingency cost estimation, called reference class forecasting.  This is another form of outside-view that could be useful for improving cost estimation processes.

I will provide an example of how it could help a defence capital program.

First, one needs to collect a representative set of data on the capital cost overruns from the past.  That is, collect data on the original cost estimate for the program and the final actual cost of the program.

Below is simulated cost overrun data for 50 capital programs.

Case #
Overrun
1
100%
2
110%
3
70%
4
140%
5
60%
6
90%
7
90%
8
110%
9
80%
10
90%
11
60%
12
100%
13
50%
14
110%
15
100%
16
110%
17
120%
18
110%
19
140%
20
130%
21
90%
22
100%
23
80%
24
80%
25
60%
26
70%
27
100%
28
80%
29
90%
30
110%
31
110%
32
90%
33
90%
34
100%
35
80%
36
120%
37
90%
38
80%
39
100%
40
80%
41
80%
42
110%
43
110%
44
60%
45
90%
46
140%
47
40%
48
110%
49
120%
50
110%

Then I can find the cumulative probability distribution function from this data.  I need to sort the data from lowest to highest and calculate the appropriate the percentile value for each value.

Below is a table showing the cumulative probability results for this sample.

Overrun
Percentile
40%
2%
50%
4%
60%
6%
60%
8%
60%
10%
60%
12%
70%
14%
70%
16%
80%
18%
80%
20%
80%
22%
80%
24%
80%
25%
80%
27%
80%
29%
80%
31%
90%
33%
90%
35%
90%
37%
90%
39%
90%
41%
90%
43%
90%
45%
90%
47%
90%
49%
100%
51%
100%
53%
100%
55%
100%
57%
100%
59%
100%
61%
100%
63%
110%
65%
110%
67%
110%
69%
110%
71%
110%
73%
110%
75%
110%
76%
110%
78%
110%
80%
110%
82%
110%
84%
120%
86%
120%
88%
120%
90%
130%
92%
140%
94%
140%
96%
140%
98%

Then I produce a smooth curve of the cost overrun versus the percentile.  See the table and graph below.

Overrun
Percentile
40%
2%
50%
4%
60%
9%
70%
15%
80%
25%
90%
41%
100%
57%
110%
75%
120%
88%
130%
92%

 
 
From this graph, I can use the cumulative percentage value on the vertical axis to lookup a cost overrun value on the horizontal axis.  In this way, I can estimate the probability of an actual cost overrun being less than or equal to a particular overrun value.  For example, 25% of the time the actual cost overrun will be less than or equal to 80% of the initial estimate, 50% of the time the actual cost overrun will be less than or equal 100%, and 90% of the time the actual cost overrun will be less than or equal to 125%.

An easier way to interrupt these results is by using the inverse of this function which I found by linear interpolation.  In this case, I can provide a confidence level that a particular contingency cost will cover the expected cost overrun.  See table and graph below for the inverse function.

Confidence Level
Contingency Cost
10%
62%
20%
75%
30%
83%
40%
89%
50%
96%
60%
102%
70%
107%
80%
114%
90%
125%



Thus, using this graph, if I wanted to be 90% confident that I covered the expected cost overrun, I would need to have a contingency cost of 125%.  A contingency cost of 60% would only provide 10% confidence of covering the expected cost overrun.

No comments:

Post a Comment